High-error approximate dictionary search using

estimate hash comparisons

This is a preprint of an article published in Software PraettEExperience.
DOI: 10.1002/spe.797 http://dx.doi.org/10.1002/spe.797
http://www.interscience.wiley.com
Copyright © 2006 John Wiley & Sons Ltd.

JOHAN RONNBLOM <johan@ronnblom.net>

SUMMARY

A method for finding all matches in a pre-processed dictior@rg fquery stringj

and with at mosk differences is presented. A very fast constant-time edimat
using hashes is presented. A tree structure is used to ne@nthesnumber of
estimates made. Practical tests are performed, showinghthastimate can filter
out 99% of the full comparisons for 40% error rates and dictionariap & four
million words. The tree is found efficient up to a 50% error.rate

KEY WORDS: edit distance, approximate, string matching, dictigrieash

INTRODUCTION

This paper considers the problem of finding text strings in a pregsede
dictionary that are close to some query string. Closenessimeddfere according
to the commonly useBdit Distance allowing the following edit operations:

« deleting a character in the query, at a cgst

« inserting a character in the query, at a cgst

« substituting a character in the query, at a cgst

« transposing two characters adjacent in both compared stringgysttca c

Two common cost setups have been given namesc = ¢, = 1,¢ = 2 is known
as thelLLevenshtein distanc#vhile ¢, = ¢, = ¢, = ¢, = 1 is theDamerau distance

1

A query is formulated as a query striggand a maximum cost for edit operations,
k. The search algorithm must then return all strings that camabehed under these
conditions. This problem has many practical applications, ofteh slightly
different requirements. Some examples:

« Spell checking for bad spellers. Dictionary words and query waresoften
transformed into pseudo-phonetic script, as bad spellers may pnabkems
choosing the correct characters for a particular sound.

« Checking for typing errors. Similar, although not equivalent, to sietking,
this application may assume that the user knows the correct nseqoé
characters to type, but may sometimes, owing to motor errdrs) faess keys,
accidentally hit additional keys, hit the wrong keys or hit the cokeygs but in
the wrong order. The search is therefore best done with unmoglifeegt words
and dictionaries. In practice, spell checkers also check fargygrors. For both
these problems, the Damerau distance may be appropriate.

« Searching in phone or address registries. This application itarsita spell
checking, in that the user is likely to be unaware of the cathesticters to spell
a name, where only the pronunciation may be known. On the other hand, the
user can be expected to type the query carefully, as it ig. shous, the
Levenshtein distance may be most suitable.

« Refining initial word hypotheses obtained by a text recognition systean as
Optical Character Recognition (OCR) or handwriting recognition.eHer
substitutions are very common, while insertions or deletions are umdikely,
especially when the text to be recognised is machine printadsgositions do
not occur. It is therefore desirable to geindc, higher tharc..

In light of these differences, the algorithms discussed in thig palbéor the most
part be kept general with respect to the cost of edit operatibms.however
assumed that all costs are at least 1, and since a maplaicean be considered as
an insertion and a deletion, and a transposition is two mpkaats, this places
some restrictions on the possible values.

Where previous published methods have often been limited to lowratesr or
even one error [1 - 5], the method discussed in this paper fquusesily on error
rates between 20 and 50%. The paper focuses exclusively on rlahgaage

dictionaries, for lack of known practical uses of other types ¢ibdiaries and their
relevant properties.

Notation

The strings..n hasn characters where the first$fl] and the lasgn]. The set of
available characters (alphabet) is denafedA C-like notation is used for bit
operations: '~' denotes the bitwise inversion, '& a bitwise operation, '|' a
bitwise or and "M a bitwiseor (exclusive-or). The operators '<<' and '>>' shift bits
left and right, filling in zero bits from the edges. Bit 4 assumed to be the
rightmost, least significant bit. The notaticis used to signify the number of '1'
bits inx, known as the bit count or population count. For the BPM algorithm (see
below), bit patterns written on the forni''signify that the bit value is repeatgd
times. These patterns are concatenated such thaftl0% '0111100'. Comparisons
assume that only the specified bits are compared, thus, ancitmpiasking
operation may be needed if the computer word is longer.

COMPARISONS OF STRINGS

There are several known algorithms that check whether two string®:.» match
given a maximum edit co®t The basis of these algorithms is to buildnam
matrix M where M(i, j) is the aggregated minimum cost after comparing the
characterg[i], €j]. Moving to the right in the matrix means inserting a charanter i
g, moving down means deleting a characteigirand moving down diagonally
means substituting or transposing characters. The ¥loren) is the edit distance.
Jokinen et al [6] present an algorithm that can be adapted forediffedit costs.

For the common case where the edit operations are all of uthitMpsrs [7]
devised a method calleBPM to express the columns being calculated with each
cell represented by single bits in five computer words. Hyyro Madarro [8]
extended this method to allow for an early exit wkéias been exceeded. In listing
1, their algorithm has been modified for matching of entireagsrnot longer than
32 characters, with the Levenshtein distance. It is sindathe Myers (cutoff)
algorithm found in [9].

BPMPreProcess(q;.. .., k)

1.

For (j € }) B[j] « 0"

2. For (j e 1...m) Blqlj]] < Blq[j]] | 0"10""
3. Return B
BPMCompare(B, qi._ ., €., k)
4, VP~ 1", VN« O, top < k
5. d« 0™ 104!
6. For(je l1...n)

7.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

X « Ble[jl] | VN
DO« (VP+ (X & VP)NVP) | X
HN <« VP & DO
HP <« VNI ~(VP | D0)
X<« (HP<<1)10™1
VN« X & DO
VP « (HN << 1)1 ~(X | D0)
d—d<<l1
If (DO & d=0")
If(d#0") val < k+1
Else
d < 10™!
If (HP & d)#0") top < top + 1
If (HN & d)#0") top < top - 1
val < top, top < Min(top, k)
While (val > k) Do
If d = 0™'1 Then Return FALSE
If (VP & d)+0") val < val + 1
If (VN & d) #0") val < val - 1
d—d>>1

27. Return (d = 10™")

Listing 1. A modified BPM algorithm for comparison of entire strings.

OPTIMISING THE SEARCH

Although the BPM algorithm of listing 1 is heavily optimised, perforg a brute-
force search by comparing a query string to each worddictenary is far from
optimal. Grossi and Luccio [10] proposed a method for quicklyrifigeout non-

matching strings. This method was improved by Navarro [11]. It sotim

frequencies of characters within a potential match and ig egant when
searching for a string at any location inside a text. For matcthiegtire words in a
dictionary it is not so elegant, but still turns out faster thia® brute-force
approach, as will be seen below. Listing 2 shows code for this thigoais adapted
for dictionary search. It will be referred to as ttmuntingalgorithm. It is possible
to implement the bit-parallel algorithm of [11] by consideringdizionary words
to be the search templates, and then comparing them tqudrg string. This
requires precalculating table entries for each alphabet ¢barand dictionary
word. However, the single-pattern approach is far more stramglafd

implementation-wise and is therefore used as a reference.

CountPrepare(q;.)

1. For(ce X)A[c]« 0

2. For(ie 1...m)Alqli]]++

3. Return A
CountFilter(q, ., e; ., A, k)
For (i € 1...n) Ble[i]] < Ale[i]]
For(ie 1...n)

If (Ble[i]]-- > 0) k++

Return (k > Max(m, n))

&

N oW

Listing 2. The counting filter algorithm applied to dictionary words.

Estimating edit distance through a smple hash comparison

The main idea of this paper is to perform a similar filbrats that of the counting
algorithm, but adapted to a dictionary by pre-computing hash valuea¢h word.

The filtration can then be performed using very few opamatiper word, without
accessing the words themselves. The idea may be compared to [12].

5

Performing the edit operations can be considered as inserting, acditaging or
transposing variouteaturesof the string. To simulate this with a hash consisting of
a fixed-size computer word, the idea is to map featurefzingis to the bits of the
hash. The operations then become equivalent to adding, removing orusinigstit
bits in the hash. It is important that the features arectssl such that a strict
minimum of operations can be calculated. It is further desithblethe estimate be
as close as possible to the real distance.

Constructing hashesfor stringsin adictionary

Statistical means are used to achieve hashes that arblesuita a particular
dictionary. The algorithm starts by counting the occurrence of @sfacter in the
dictionary. It keeps separate counts based on the number of instaEntes
character in the currently examined string. Thus, for theagstreferral’, the
following features are countedi, €1, f1, €2, r2, r3, al andl1l. For convenience,
each character/instance pair will be calldéature Any string, then, has a number
of features equal to the number of characters in the string.

The second step of the algorithm is to group the features in a nofrigrkets,
where, ideally, the features in each bucket should occur eqofiiy in the
dictionary, and each bucket should have an equal number of featutesT e
optimum number of buckets is dependant on the nature of the dictionary and
practical implementation considerations. In this paper, 32 or 64 lsuekee used.

Table | shows an allocation of features for an English dictiofiacan be noted
that, because of the highly uneven character distribution in Englishmpossible
to spread the features evenly. The algorithm successively tla&kesost common
unallocated feature and adds it to the bucket with the lowesegaggr feature
count, taking the first one in case of a tie. The individualbsintommon features
are thus assigned to the first bits of the hash value.

Each bucket corresponds to a bit in the hash, and if any of theefgean a
bucket occurs in the string, that bit is set. If a string contiiesture that does not
occur in the dictionary, a fallback method must be used to assigitehle bit. The
following formula was used for this purpose:

b = (W/2) + (character+ instancg mod (/2)) (1)

wherew,, is the width of the hash in bits. This formula spreads suatirks over

the second half of the hash. The motivation for using only the selalid

representing individually less common features, was found in iqgahct
experiments.

The alert reader will have noticed that this method of corstgu@ hash
discards any information about the order of characters withitrireg.s Thus,
anagrams have the same hash. In practice, however, anagramsarar
Furthermore, it can be noted that the Counting algorithm providaper bound
for the filtration rate of this method. The difference incéfincy depends on how
many bits in a hash are typically used to represent multiple ésadfia word.

1.s1 911 17:<2 25:12x191r3s5i5f3g4y3 x4
22el 10:c1 18:pl 26: f1 p2n3 03 x2 a5 z3

3il1 11:'1 19:h1 27:r2i3a313w214j2d4 k4 f4
4:al 12:dl1 20: bl 28: 02 d2b2 k2 2214 6 ud p4 a6
5rl1 13:ul 21:i2 29:kl1z1j114d3b3

6:nl 14:e2 22:ylv2adndo5 30: vl c2h2t3p3u3

7:t1 15ml 23 a2s4Am3rd4x3c4i6 31:wle3u2y29g3h3e5qg2z4
8:0l 16:gl 24 nm2m2f2k3mdb4 32:12s3g2e4c304w3n5s7

Table I. Feature allocation for an English dictionary.

Computing the edit distance estimate for two hashes

Let h, andh, be hashes of two stringsande to be compared. The number of bits
in h, andh, then constitute a minimum number of features in the respettingss
We further compute the bitwise exclusive-omplandh, and name ik. The bits in

x correspond to the bits that have changed between the two hEsisemay be for
three reasons: the feature may need to be inserteq, imeaning that the
corresponding bit is only presenthg the feature may need to be deleted figgm
meaning that the bit is only presenthp or a replacement may be necessary, in
case the bit should be 'moved' from one positidm, to another one ih..

We note that a replacement, that is, a bit 'moving’, may causeithiger of bits set

in the hash to increase or decrease. This is because thelersaveral features in
g or e corresponding to the same bit, causing the number of bitsanh, to be
lower than the number of features gnor e. Consider table | and the word
'mammal’. In this case, the featue@sandm3 are both expressed in bit 23. When a
replacement is made, one such 'invisible' feature may becoibke visecause the
corresponding bit has not been set previouslywioe versa Now consider the
difference

|hq| - hel (2)

which corresponds to the number of operations necessary to getrieenamber
of bits in both hashes. If the difference is positive, it carrespond either to
deletions ing or to replacements. If it is negative, its absolute valueespands to
insertions ing or replacements.

With additions or deletions catered for, the vakjecén tell us more about
replacements. Since each replacement can cause two liisvy and therefore
increaseX by two, a lower bound for such replacements is:

(x| - abstiy| - hel)) /2 (3)

A minimum edit distance can then be summed as

0in(C, €) = €5 X (X[- absfy| -) / 2 + min€,, G, &) x abs(hg| - hel) (4)

or, if ¢, = c,, ¢, = c,, which is normally true,

drin(C, €) = X (X[+ absti| - hl)) /2 (5)

Some processor architectures such as DEC Alpha and UltraSRawrGledicated
operations to count the bits of a computer word. For implementatiorethen
CPUs, one or even two of these counts can be pre-computeditAsoant can be
parallelised by using masks and shifts, the resulting fundieery fast. Listing 3
shows the minimum edit distance estimate complete with sudpt@mised bit

count function for 32 bit hashes, usiag= 1. Discussion about a similar bit-count
function can be found in [13].

dwin32(hy, nhy, hi)

. x< ho™hg

2. nhg < CountBits32(/y)

3. nx < CountBits32(x)

4. Return (nx + Abs(nhy — nhg)) / 2
CountBits32(a)
mask < 011111111111
a < (a-{(a & ~mask) >> 1)) — ((a>>2) & mask)
a<—a+(a>>3)
a < (a & 070707) + ((a >> 18) & 070707)
a < ax010101
Return ((a >> 12) & 077)

S©®Nowm

1

Listing 3. The algorithm &, and a supporting function. For clarity, constants (except
shift counts) are expressed in octal base.

INDEXING STRINGS TO AVOID COMPARISONS

Of the many techniques invented to reduce the number of comparisossangce
for a search operation, the tree structure BKT has been founblsddadictionary
searches [2, 3]. The method presented here is similar BKfhe More in-depth
analysis of the BKT can be found in [14]. The general idea raap similar
strings such that entire branches can be dismissed, rathenatiguy to consider
each individual string in the dictionary.

Constructing thetree

Hashes are pre-computed for each string. A pivot string (or rrathpvot hash) is
selected arbitrarily from the dictionary. It is then compagainst all other hashes
to find the maximum distance, which becomes the height of ¢ee Each node in

the tree has a pivg which it shares with its first subnode. All strirge/hered,,,;,

(p, © <L are put in a subtree under it, wheres the level in the tree that the node
belongs to. Then, one of any remaining strings is selected ahpifcx a second
node at that level. This continues until all strings are grouped uoater subnode.
Subtrees for each node are then created in the same wayn@&ans that on level
1, a pivot is grouped with all hashes at a distance of at miyetriLit, while on
level 0, words with identical hashes are grouped. Figarshibws a small tree.
Note again that the order of characters is ignored, thus 'paid&hiscal to 'raptor'.

Space and /O considerations

As we will see, the estimate is very accurate, whicamadhat traversing the tree
itself will likely turn out to be more costly than computing exedit distances for
the few potential matches, even for very high valuds tifis desirable to optimise
the layout of the tree to make the necessary I/0O as fgsvsssble. This is best
achieved by a data layout that results in serial rather #raslom accesses. Note
that 'l/O' here refers to fetching data from the computer's m&mory into the
cache, although the same principle would hold if the data is hedd enen slower
medium such as a hard drive or a network.

It is noted that ik is so large that every hash matches, we will visit @ade in a
determined order. If a subtree can be dismissed, we mekglyforward in this
sequence. Furthermore, practical experiments led to theusomtlthat it is more
efficient to omit nodes for level 1. Rejecting a level 1 s@bthen means skipping
through the subsequent data, going past all level 0 nodes.

Furthermore, it was found efficient to include the hashes intbé¢kerather than
indexing them. Figure i shows an improved tree layout. The continuous line
shows the serial order of the data, while the dashed arrowsdffsmis stored at
tree nodes, indicating where to skip in case the subtreepofod is dismissed.
Nodes further store information about which level they belong toglisasva bit to
indicate if the node pointed to is at the same level, to recheceory access. This
information can be packed into a 32-bit word for reasonably lacg@whries. The
bottom nodes store a hash, and one or several offsets to stivmit$ of these
offsets are used to signify if the subsequent data belongs wathe hash, is a

10

level 1 implicit node, or a higher node. Listing 4 shows pseudocotiedhstructs
an optimised tree recursively. A drawback of the optimised laydbatst does not
lend itself well to insertions and deletions in the tree.

parrot raptor goat boxer horse salmon wolf owl parrot raptor goat boxer horse salmon wolf owl

Figure 1a. A small example tree. 1b. The same tree with optitageut.
Level numbers on the left showndbetween words connected through that level by an
up-right-down path. Words are pivots for all nodes on lines going up from them.

Searching thetree

The search is entered at the first node of the top levenimnodeq is compared
against the pivoe. If d.,(q, €) - kis lower than the level of the node, the search is
continued from levedl,(q, €) - k of the leftmost subtree for the node. If it is higher
or equal, the search continues at the next node of the samelfleived. the last
node in a subtree, the search is continued at the next node coontetthdrparent
node in the tree, and so on.

If at any timed.,,(q, € < k, the node that has been compared may contain a
match. At this point, a full edit distance comparison must bdenfor all strings
belonging to that node. These may be more than one, as sevaegd stay have
identical hashes. When a match is found, it is possible tihvdesearch function
return that string, and allow subsequent calls to continue searftbimghe same
position in the tree. Listing 5 shows pseudocode that searches an egtirass

11

EXPERIMENTAL RESULTS

The algorithms were implemented in C and compiled with GCiagusull
optimisations. Critical sections were disassembled and manusgigcted to verify
code efficiency. Some changes from the pseudo-code shown in thisvpeger
made, for example to minimise memory accesses and avoidassaey branches.
The test machine is a Pegasos 2 with a 1 GHz 7447 ('G4') &Phitand the
MorphOS 1.4.5 operating system. All required data was held in memory.

MakeTree(W)
1. global variables pos < 0, Tree
2. create a container T with all words W
3. TreeHeight < Max(din(710], €)) for words e € T
4. MakeSubnodes(7, TreeHeight - 1, TRUE)
5. Tree|pos] < TreeHeight
6. Return Tree
MakeSubnodes(V, L, U)
7. If(L>0)
8. Repeat
9. move e € N with d,i(N[0],) < L to a container S
10. R « (is N empty?)
11. If (L>1)Q < pos++
12. MakeSubnodes(S, L - 1, R)
13. If (L>1) Tree[Q] <= R << SHIFTyighleveivit | L << SHIFTjeyel | pOS
14. Until (R)
15. Else
16. Tree[pos++] < the identical hash for all words € N
17. Repeat
18. W « offset to N[0], remove that word
19. R < (is N empty?)
20. Tree[pos++] <= U << SHIFThightevelbic | R << SHIFTjevelonebic | W

21. Until (R)

Listing 4. Construction of the optimised tree.

12

The Levenshtein distance was used with the BPM algorithm forcagidn as long

as g was at most 32 characters. For the exceptionally rare longets, an
algorithm similar to one found in [6] was used as a fallbdak.improve the
efficiency of the tree at the cost of increased pre-processingttempts were made

to select pivots by pseudo-randomly choosing between the availables.value
Experimentally it was found most efficient to choose the pivotrtreatimised tree
height, and then pivots that grouped as many words as possible intsutiteces,
although the speed gain compared to using arbitrary pivots mawltyde about

ten percent only.

FirstSearch(Tree, TreeHeight, g, h,, k)

1. level < TreeHeight — 1, pos < level - 1

2. Return RepeatSearch(7ree, TreeHeight, q, h,, k, pos, level)
RepeatSearch(Tree, TreeHeight, q, h,, k, pos, level)

3. While (level < TreeHeight)

4. word ¢ NULL
5 If (level > 0)
6. level <~ Min(level, dwin(h,, Tree[pos++]) - k)
7 If (level > 1)
8 node < Tree[pos - level]
9. pos < node & MASKps
10. Else If (level < 1)
11. node < Tree[pos++]
12. word < node & MASK,jgoet
13. If (node & MASKieyeionesit) level <— 1
14. Else
15. While (((node <— Tree[pos++]) & MASKievetoneit) = 0)
16. If (node & MASKievernighvir) level < (Tree[pos] & MASKieyel) >> SHIFTjeyel

17. pos < pos + Max(0, level — 1)

18. If (word # ~NuLL)

19. If (BPMCompare(q, word, k)) Return [pos, level, word]
20. Return NuLL

Listing 5. Searching the optimised tree.

13

Fourteen dictionaries from the freely available spell checlepeA[15] were used
as test data. These dictionaries all use a western highabet. All dictionaries
were converted to lower case and any duplicates were remawederf: all these
dictionaries were joined into one large dictionary, again with dafgs removed.
The aggregate is here called the 'Monster' dictionary.

Tests were performed with a percentage of errors from 0 to TR&maximum
query distancd was set to this percentage of the length of query words, rounded
upwards. For each test, 10 000 query words were pseudo-randonckgddiem
the dictionary. Thenk different pseudo-randomly chosen characters in the word
were replaced by characters pseudo-randomly picked from thébatplsed in the
dictionary. Thus, each query was guaranteed to match at least ahe wor

Dictionary N X Ws Cs Tp W/h TS30
32bit 64bit 32bit 64bit 32bit 64bit 32bit 64bit

Tagalog 14 29 138 329 388 0.22 030 1.08 1.08 0.30 0.33
Breton 33 34 282 688 822 0.65 0.98 1.07 1.07 0.58 0.75
Swedish 118 31 1243 2749 3319 279 443 110 1.08 3.30 3.80
English 135 27 1304 2949 3508 3.49 5.08 1.12 110 3.72 4.43
Icelandic 222 38 2434 5463 6711 586 9.01 1.10 1.06 6.09 6.59
Dutch 227 41 2639 5651 6809 5.62 8.82 1.09 107 7.63 6.98
Irish 296 33 3371 7146 8558 7.75 134 1.09 1.06 9.28 9.40
Norwegian 296 37 3966 8267 10043 8.15 12.7 1.08 1.05 13.1 9.93
German 309 35 3999 8101 9940 841 133 1.11 105 125 111
Portuguese 386 39 4348 8568 10185 10.2 16.2 1.21 1.16 11.4 10.3
Catalan 603 43 6685 13195 15764 16.8 27.0 1.23 1.16 15.9 135
Spanish 506 33 6791 12943 15412 16.9 27.7 130 1.19 17.4 155
French 630 43 7651 15289 18221 19.8 315 1.14 1.08 21.4 16.6
Finnish 731 31 9992 17627 21424 158 279 137 121 29.2 185
Monster 4374 60 52793 96118 119934 133.5 1386 1.47 1.22 114.6 65.8

Table Il. Dictionaries. Legend: N = number of words, thousadtts.Alphabet size.
Ws = Raw size of words, Cs = Combined size of words andttr@esénds of bytes).
Tp = Time to compute the tree (s). W/h = Average numbeoufs per hash. TS30 =

Average search time with 30% error rate (ms).

Table Il displays some information about these dictionaries and w®mheesults.
Space usage for the trees ranges from about 80% of the uncomplesseadry
size for the largest dictionaries and 32 bit hashes, to about 2808tef smallest

14

dictionaries with 64 bit hashes. The pre-processing was not eptnfor speed. In
practice it appears to exhibit a linear relationship with dletionary size. Even

with the largest dictionary and 32 bit hashes, only 1.47 wor® she same hash
on average. Finally, average search times for 30% errorshasen. For 'small’

dictionaries, it is faster (although never dramatically) to3%sbit hashes, while for
'large’ dictionaries, 64 bit hashes become faster.

To isolate the impact of dictionary size from other factaubsets of the Monster
dictionary were chosen pseudo-randomly for dictionaries with 16 000, 2561000
4 096 000 words. Results from these tests are shown in figures 2 and 3.

120
110

100 /'/./
90

w " AN

70 / m Brute force
60 f/ M + Counting

* M M / » 32-bit hash
< 64-bit hash

40 " //i{ /' O 32-bit tree
30 X 64-bit tree
20 « o < ’M

10 "h’—’///

0 T \ \ \ \ \ \
0% 10% 20% 30% 40% 50% 60% 70%

/

1|

50

Average search time (ms)

Error rate

Figure 2. Average search times for a 256,000 word dictionary.

Figure 2 shows average search times for the synthetic 256 000dweticthary.

The brute forcealgorithm uses the BPM to compare each word in the dictionary, or
a simple exact comparison flr= 0. The counting algorithm works as in listing 2.
The 32- and 64-bit hash algorithms store a table with pre-computed farsbash
word. Finally, the tree algorithms operate as in listing fnay seem strange that
the counting and pure hash algorithms do not require more tinkeiraseases

15

within moderate levels. The reason is that errors do notssadly increase the
number of estimated matches, even though the number of actual sngtoles
quickly with k. On the contrary, since the character distribution of actoads is
not even, a pseudo-random replacement from the entire alphabetyigdikebult
in a more unique query word, which may make up for the wider query range.

It can be seen that 32-bit hashes are sufficient for low eates, but quickly
deteriorate for high and extremely high number of errors, unlike 64ablies. For
larger dictionary sizes, the tree-based algorithms beconteseglamore efficient.
However, the crossing points determining the relative meritiyofithms for each
error rate do not move by more than a few percentage units whiaxamined
16 000--4 096 000 word range.

O Counting

A 64-bit hash

& 32-bit hash

0.6 \\ \\\ ¢ 64-bit tree
\ \’\ \\ \\k 4M words
0,5 32-bit tree
\‘\\.\ N " 4M words
04 « 04-bit tree
03 256k words
\v\\t\\: , 32-bit tree
0,2 > 256k words
\% . 64-bit tree

0.1 16k words

Filtration rate

0,0 T T T T T T |y 32-bit tree
0% 10% 20% 30% 40% 50% 60% 709 10k words

Error rate

Figure 3. Filtration rates for different algorithms, dictionaryes and error rates.

In figure 3, filtration rates are studied. The filtratioterés defined as the number
of non-matches that are filtered out by an algorithm, divided by thenataber of
non-matches. For Counting and hash filtration rates, this istieeaf non-matches
that are not verified with the BPM algorithm, while for tréeis the ratio of non-
matches that are not subjected to a hash estimate. Thus, gvotgsed because

16

they have identical hashes are seen to improve the filtratitsm of the tree.
Filtration rates for counting and pure hash algorithms do not veahydictionary
size. For trees, the filtration rate increases drditieath increased dictionary size.
The graph shows that the filtration efficiency, particularly@d+bit hashes, is very
close to the theoretical optimum of the counting filter.

CONCLUSIONS

It is clear that there is a very significant gain to be nfade using hash-based
estimate comparisons. The space requirement can be made mdderatey
dictionary size by choosing the hash length correctly. Furtherntbee,high
discriminatory power of the estimate means that the dictiotseif can be stored
in a compressed form.

The BKT-like tree is not as discriminatory, but still effitieat least for low-to-
moderate error rates, and especially with large dictiesaCompared to [2] and
[3] it appears that the combination of a tree and hash valsesmaproves the
efficiency of the tree for higher error rates, as thesstremain efficient for error
rates up to 50%.

Many aspects of the presented hashing technique remain oderttier research.
For example, what makes the hashes more efficient withe shationaries than
with others? Some relation to alphabet size can be suspeuatddere may also be
other factors. Tests with other error models may prove sttege It may also be
worthwhile to compare with other tree implementations. Sinedull comparisons
are never needed for decisions on how to traverse the tregréheal for further
parallelisation by comparing multiple words at once, ideallyngusSIMD
computations as discussed in reference 3. Furthermore, itbeasfficient to
traverse the tree once while searching for multiple queries.

Naturally, it would be interesting to see how this algorithmageer§ compared
to algorithms designed specifically for low error rates. tAis algorithm was
developed mainly with high error rates in mind, and owing to the laaka#fss to a
proven benchmark implementation, this was not done in this study.

17

8.

9.

REFERENCES

Dimov, D. T. An Approximate String Matching Method for Handing Recognition Post-
Processing Using a Dictionaryrontiers in Handwriting Recognitignimpedovo S (ed.).
Springer, 1994; 323-332.

Baeza Yates, Ricardo and Navarro, Gonzalo. Fast ApprtexiBtang Matching in a Dictionary.
SPIRE '98, String Processing and Information RetrieNeEE Computer Society, 1998; 14-22.
Fredriksson, Kimmo. Metric Indexes for Approximate String detg in a Dictionary.
Proceedings of SPIRE 2004, Lecture Notes in Computer Sciemieger, 2004; 212-213.
Shang, H, Merrettal, T.h, Tries for Approximate Stringtdfiang, IEEE Transactions on
Knowledge and Data Engineering996; 8:4.

Jokinen, Petteri and Ukkonen, Esko. Two algorithms for appedgistring matching in static
texts. Mathematical Foundations of Computer Scientarlecki, A (ed.).Lecture Notes in
Computer Science 528pringer, 1991; 240-248.

Jokinen, Petteri, Tarhio, Jorma, and Ukkonen, Esko. A compad@pproximate string
matching algorithmsSoftware: Practice and Experient896; 26(12): 1439-1458.

Myers, G. A fast bit-vector algorithm for approximate strimgtching based on dynamic
programmingJournal of the ACML999; 46(3):395-415.

Hyyr6, Heikki and Navarro, Gonzalo. Bit-Parallel Witnessesl &heir Applications to
Approximate String MatchingAlgorithmica2005; 41: 203-231.

Hyyr6, Heikki. A Bit-Vector Algorithm for Computing Levenshtein ambmerau Edit
DistancesNordic Journal of Computing?003; 10:1.

10. Grossi, R. and Luccio, F. Simple and efficient striregaming with k mismatche$nformation

Processing Letters, 19883(3):113-120.

11. Navarro, Gonzalo. Multiple approximate string matching by @oginBroceedings of WSP'97

1997; 125-139.

12.Faloutsos, C. Signature-based text retrieval methods: a/sif#& Data Engineerind990; 13

(1): 25-32.

13. AMD CorporationAMD Athlon Processor: x86 Code Optimization Guig@02; 136-139,
14.Chavez, Edgar, Navarro, Gonzalo and Marroquin, José LuishBgpin Metric SpacesACM

Computing Survey2001; 33(3):273-321.

15. Atkinson, Kevin. GNU Aspelhttp://aspell.net/ (Dec 1 2005)

18

